27 research outputs found

    Universal Denoising Networks : A Novel CNN Architecture for Image Denoising

    Full text link
    We design a novel network architecture for learning discriminative image models that are employed to efficiently tackle the problem of grayscale and color image denoising. Based on the proposed architecture, we introduce two different variants. The first network involves convolutional layers as a core component, while the second one relies instead on non-local filtering layers and thus it is able to exploit the inherent non-local self-similarity property of natural images. As opposed to most of the existing deep network approaches, which require the training of a specific model for each considered noise level, the proposed models are able to handle a wide range of noise levels using a single set of learned parameters, while they are very robust when the noise degrading the latent image does not match the statistics of the noise used during training. The latter argument is supported by results that we report on publicly available images corrupted by unknown noise and which we compare against solutions obtained by competing methods. At the same time the introduced networks achieve excellent results under additive white Gaussian noise (AWGN), which are comparable to those of the current state-of-the-art network, while they depend on a more shallow architecture with the number of trained parameters being one order of magnitude smaller. These properties make the proposed networks ideal candidates to serve as sub-solvers on restoration methods that deal with general inverse imaging problems such as deblurring, demosaicking, superresolution, etc.Comment: Camera ready paper to appear in the Proceedings of CVPR 201

    Poisson Image Reconstruction With Hessian Schatten-Norm Regularization

    Full text link

    3D Poisson microscopy deconvolution with Hessian Schatten-norm regularization

    Full text link
    Inverse problems with shot noise arise in many modern biomedical imaging applications. The main challenge is to obtain an estimate of the underlying specimen from measurements corrupted by Poisson noise. In this work, we propose an efficient framework for photon-limited image reconstruction, under a regularization approach that relies on matrix-valued operators. Our regularizers involve the Hessian operator and its eigenvalues. They are second-order regularizers that are well suited to biomedical images. For the solution of the arising minimization problem, we propose an optimization algorithm based on an augmented-Lagrangian formulation and specifically tailored to the Poisson nature of the noise. To assess the quality of the reconstruction, we provide experimental results on 3D image stacks of biological images for microscopy deconvolution

    Poisson Image Reconstruction With Hessian Schatten-Norm Regularization

    No full text
    Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework
    corecore